
Detection of Trabecular Landmarks for Osteoporosis Prescreening in
Dental Panoramic Radiographs

Jiaxiang Ren1, Heng Fan1, Jie Yang2, and Haibin Ling1

Abstract— Dental panoramic radiography (DPR) images have
recently attracted increasing attention in osteoporosis analysis
because of their inner correlation. Many approaches leverage
machine learning techniques (e.g. , deep convolutional neural
networks (CNNs)) to study DPR images of a patient to provide
initial analysis of osteoporosis, which demonstrates promising
results and significantly reduces financial cost. However, these
methods heavily rely on the trabecula landmarks of DPR images
that requires a large amount of manual annotations by dentist,
and thus are limited in practical application. Addressing this
issue, we propose to automatically detect trabecular landmarks
in DPR images. In specific, we first apply CNNs-based detector
for trabecular landmark detection and analyze its limitations.
Using CNNs-based detection as a baseline, we then introduce a
statistic shape model (SSM) for trabecular landmark detection
by taking advantage of spatial distribution prior of trabecular
landmarks in DPR images and their structural relations. In
experiment on 108 images, our solution outperforms CNNs-
based detector. Moreover, compared to CNN-based detectors,
our method avoids the needs of vast training samples, which is
more practical in application.

Clinical relevance This paper presents an automatic way
to detect jointly multiple trabecular landmarks from dental
images for using in osteoporosis analysis.

I. INTRODUCTION

Osteoporosis has been one of the most common diseases
in US and affected over 3 million patients every year [26].
Numerous efforts have been made in recent years to provide
early diagnosis of osteoporosis to reduce bone fracture risks.
Currently, a golden standard is to utilize the Dual-energy X-
ray Absorptiometry (DXA) for osteoporosis diagnosis [26],
which is, however, cost inefficient and impractical for routine
examination.

Inspired by the study of correlation between DXA mea-
surements and dental data [9], [24], [12], many researchers
analyze dental images to offer initial diagnosis of osteoporo-
sis and demonstrate promising results. Among various types
of image data, dental panoramic radiography (DPR) images
have drawn extensive attention owing to its availability and
promising results for the potential of osteoporosis prescreen-
ing. Kavita et al. [10] develop a support vector machine
(SVM) learning method to identify osteoporosis or low bone
mineral density. Roberts et al. [21] apply texture features
extracted from DPR images for osteoporosis classification
and achieve satisfied results. Li et al. [13] propose to classify
osteoporosis condition with features from eight regions of
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Fig. 1: Trabecular landmarks in a DPR image (a) of manual
annotation by a dentist (b) and by our solution (c). We
observe that, our method provides accurate localization of
landmarks. Best viewed in color.

interest (ROIs) that are centered at trabecular landmarks in
DPR images. In order to improve classification accuracy,
Bo et al. [4] propose a two stage SVMs model to classify
osteoporosis condition with hand-crafted features from these
RoIs. Furthermore, motivated by the powerful representation
of deep convolutional neural networks (CNNs) [11], Chu et
al. [6] propose an octuplet Siamese network (OSN) to learn
discriminative features for osteoporosis status prediction. Yu
et al. [27] propose a multi-task scheme for transfer learning
in DPR images which achieves state-of-the-art performance.

Despite having achieved some promising results for osteo-
porosis prescreening, the aforementioned approaches heavily
rely on the manual annotations of trabecular landmarks in
DPR images for feature extraction (see Figure 1(a)), which
severely limits its practical application. In this work, we aim
to address this problem by proposing automatic detection of
trabecular landmarks (see Figure 1(b)).

Motivated by the huge success of CNNs in generic object
detection [22], [5], [20], [19], [15], [8], one natural solution
is to directly apply existing state-of-the-art deep detector
(i.e., RetinaNet [14] to localize these trabecular landmarks.
Nevertheless, we observe that, the CNNs-based detector fails
to separate targets with similar intensity and texture features.
Therefore, we use the CNNs-based detector as a baseline in
this paper, and present a statistic shape model (SSM) for
trabecular landmark detection. Our method is inspired by



two observations in DPR images: (1) the relative positions
of landmarks, on the left or right sides, are similar for each
sample; (2) each type of landmarks lie in the similar position
of a DPR image. For example, the condyle landmarks lie on
the top corners of images. With such observations, we are
able to use SSM to make full use of both the relationship
and spatial prior distribution among landmarks. SSM is a
statistical deformable model of the shape and appearance for
a deformable class, which is then used as prior knowledge
to locate the coordinates of landmark. In experiment on
108 images, our solution outperforms CNNs-based detector.
Moreover, compared to CNN-based detectors, our method
avoids the needs of vast training samples, which is more
practical in application.

II. METHODOLOGY

A. Problem Formulation

We utilize a dataset of 108 DPR images extracted from
different subjects for trabecular landmark detection [4], [6].
The images comes from 52 subjects with osteoporosis and 56
normal subjects. For each DPR image, eight ROIs correlated
with the osteoporosis condition are manually annotated by
dentists. Then our task is to localize these ROIs automati-
cally, e.g. the x and y coordinates of ROIs in a DPR image.
For simplicity, the trabecular ROIs are interchangeable with
the trabecular landmarks in this task. For the i-th subject, it
is expressed as

si = G(Ii), (1)

where si = [x1, y1, . . . , xNR
, yNR

] ∈ R2NR×1 denotes the
coordinates of ROIs, NR (set to 8 in our work) represents
the number of ROIs, Ii ∈ RW×H is the input DPR image,
and G the mapping function to be learned.

B. Deep Learning Approach

For a practical osteoporosis prescreening system, the
CNNs-based detector should give consideration to both
accuracy and efficiency. Inspired by the effectiveness of
RetinaNet [14], we firstly introduce this detector to find ROIs
in DPR images. The whole model can be divided into two
parts, the deep feature extractor and the detection head. We
freeze the feature extractor and only fine-tune the head to
prevent overfitting. We also add a smaller anchor of 16× 16
with stride of 4 to capture tiny texture features in trabecular.
Considering the fact that trabecular patterns are scattered
in various positions in the oral cavity, DPR images contain
context information of trabecular bone. Thus the eight ROIs
are grouped into four pairs based on symmetry of human
face as illustrated in Figure 2. Each pair ROIs shares the
same label, e.g. condyle, maxillary tuberosity, mandibular
premolar region and mandibular angle.

During training, the targets are eight bounding boxes
centered around the coordinates of the eight ROIs. Back-
propagation is employed to update the weights in detection
head. During inference, the outputs of detection network are
bounding boxes with predicted labels. Here we propose two

Fig. 2: Initial search box of SSM. Label-0: the condyle;
Label-1: the maxillary tuberosity; Label-2: the mandibular
premolar region; Label-3: the mandibular angle.

approaches to convert bounding boxes into the coordinates
of ROIs s: Global detection (GD) and local detection (LD).
In GD, the conversion is produced in the left and right side
respectively. Take the left side for example, the coordinates
of each ROI (label) are the center of the bounding box with
the highest confidence score for that label. Meanwhile the
conversion in LD is produced only in the designated range
where all training samples with the same ROI label lie within.
Specifically, we firstly scan training set to find the minimum
and maximum positions of the designated range. The dilation
operation are adopted for more robust output. After that, only
the bounding boxes that lie within the range are selected as
the candidate bounding boxes. Finally, the coordinates of
each ROI (label) are the center of the candidate box with
the highest score for that label.

C. Landmark Localization Approach

In order to exploit the prior of spatial distribution of
trabecular landmarks and their structural relationships, we
propose using a statistic shape model (SSM) [7], [18] to
detect DPR landmarks. SSM is a statistical deformable model
of the shape and appearance for a deformable object class.
A deformable object is generally taken as a set of landmarks
points with specific semantic meanings. Using each DPR
image and the 8 ROIs as a deformable object, SSM locates
the coordinates of ROIs through optimization. In our task,
a shape instance is interchangeable with a set of trabecular
landmarks and represented as a 2NR × 1 vector s.

Given N training DPR images [I1, . . . , IN ] ∈ RWH×N

with corresponding shapes [s1, . . . , sN ] ∈ R2NR×N , the
SSM consists several procedures. First, these training shapes
are registered using generalized procrustes analysis (GPA)
and then principal component analysis (PCA) is used to
construct the orthonormal shape basis which is further aug-
mented with four eigenvectors for the similarity transform.
Mathematically, we reconstruct the i-th shape si as

si = s̄+U spi, (2)

where s̄ ∈ R2NR×1 represents the mean shape in training set,
U s = [u1, . . . ,un] ∈ R2NR×n is the augmented orthonor-
mal shape basis, and pi ∈ Rn×1 denotes the parameters of
the i-th shape.

Afterwards, to take advantage of texture and intensity
features in DPR images, we also construct an appearance
model. Each training DPR image is wrapped into the mean
shape and generates the shape normalized DPR image,
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denoted as Ii(W(pi)), where W(·) indicates the wrapping
function. Thereafter, PCA is applied on {F(Ii)(W(pi))}Ni=1

to construct the orthonormal appearance basis, where F(·)
is the feature function such as LBP [1] or IGO [23]. Finally
we can reconstruct the appearance instance of the i-th shape
normalized DPR image ai as

ai = ā+Uaci, (3)

where ā ∈ RM×1 represents the mean feature of the
shape normalized DPR images in training set, Ua =
[α1, . . . ,αn] ∈ RM×m denotes the orthonormal appearance
basis, and ci ∈ Rm×1 is the i-th appearance parameters.

The fitting procedure tries to recover parameterized de-
scription of a test sample through optimizing the objective
function with respect to the shape and appearance parameters
as follows

arg min
p,c
||F(I)(W(p))− ā−Uac||2. (4)

Lucas-Kanade Optimization [17], [3] is applied to solve the
optimization in Eq. (4). With the best fitting parameters and
the orthonormal basis of shape model U s, we can determine
the test sample landmark ŝ.

III. EXPERIMENTS AND RESULTS

In this section, we conduct experiments on the DPR
dataset [4], [6] to validate the effectiveness of the deep learn-
ing and SSM approaches. There is no new data collected in
this study and hence no human subjects or animals involved.
The task is to localize the trabecular landmarks and the loss
is the normalized sum of squared differences between test
sample landmarks ŝ and the ground truth landmarks s∗.

loss =
L(s, s∗)

N (s∗)

L(s, s∗) =
1

NR

NR∑
i=1

√
(si,x − s∗i,x)2 + (si,y − s∗i,y)2

(5)

where N (s∗) is the normalization factor which equals to the
average edge length of the ground truth bounding box. The
smaller the loss is, the better the approach is.

A. Environmental Settings

We adopt 5-folds cross validation as the evaluation criteria
and there are 80% training samples and 20% test samples in
each fold. The final loss is calculated by averaging all of the
5 cross validation results.

B. Deep Learning Results

In deep learning approach, each sample is resized so
that its edges are within [800, 1333] pixels. The feature
extractor is frozen and only the weights in detection head
are finetuned. The network is trained for 60 epochs. The
learning rate starts with 0.001 and is halved if the mean
average precision (mAP) on validation set is not improved for
three consecutive epochs. For fair comparisons, we propose

Fig. 3: Prediction result of each method.

two approaches, GD and LD, to convert detection results
(e.g. bounding boxes) into landmark coordinates so that loss
in Eq. (5) can be obtained. Dilation in LD approach is 2%
of the image side length.

Both the results of GD and LD on validation sets are
reported. Table I enumerates the loss of 5-folds cross val-
idation. LD outperform GD for most cases and the mean
loss of LD surpasses GD’s by a large margin. This could be
due to the fact that trabecula landmarks lie within a certain
range of DPR image that can be estimated approximately
by the landmark distribution in training set. And thus, more
potential landmark candidates can be selected rather than
outliers lying far from the ground truth landmark.

C. SSM Results

Considering that the sizes of all DPR images are similar,
we construct SSM model with only one scale. All images
are firstly resized so that the length of diagonal is 300 pixels
and then the SIFT feature [16] is extracted to construct
appearance model. As shown in Figure 2, the center rectangle
that 10% apart from each side is the initial bounding box. In
this experiment, we apply both the holistic and patch-based
SSM [25], [2] for locating landmarks. The holistic SSM
uses a holistic appearance representation while the patch-
based model extracts features at each landmark and then
concatenates these features as an appearance instance.

The patch-based model ignores background noises and is
thus more robust in case of limited dataset. Table I also
enumerates the results of the holistic and patch-based SSM.
We can see that patch-bases SSM outperforms all the other
methods by a significant margin and achieves the lowest
loss. This demonstrates the generalization capability and
effectiveness of patch-based SSM.

The holistic and patch-based SSM locate landmarks better
than RetinaNet with GD. Though RetinaNet with LD and the
holistic SSM achieve similar loss, the latter does not require
any post-processing and performs more stable. Besides, in
experiments, we observe that the displacement of SSM
predictions is much smaller than RetinaNet, as illustrated
in Figure 3, which is partially because SSM takes use of
spacial relationship between landmarks.

IV. CONCLUSIONS
In this paper, we develop an automatic trabecular landmark

detection algorithm in the context of DPR-based osteoporosis
prescreening. In order to compare our SSM with popular
CNN-based detectors, we also propose two methods, GD and
LD, for converting detection boxes into landmarks. In exper-
iment on 108 DPR images, our solution is more robust and
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TABLE I: Loss of 5-folds Cross Validation (in pixel)

Methods CV-1 CV-2 CV-3 CV-4 CV-5 Median Mean
RetinaNet+GD 0.0505 0.1095 0.0550 0.0554 0.0521 0.0550 0.0645
RetinaNet+LD 0.0395 0.0495 0.0631 0.0379 0.0388 0.0395 0.0458
Holistic SSM 0.0484 0.0430 0.0419 0.0496 0.0457 0.0457 0.0457

Patch-based SSM 0.0384 0.0400 0.0342 0.0375 0.0407 0.0384 0.03816

shows outstanding detection accuracy in comparison with
state-of-the-art detection algorithms. Furthermore, compared
with CNN-based detectors, our method avoids the need of
a large amount of training data, which is more practical in
application. The promising result encourages future work for
automatic inexpensive osteoporosis prescreening.
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[12] André Ferreira Leite, Paulo Tadeu de Souza Figueiredo, Cláudio Mares
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